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Abstract
Using the Feynman–Kac and Cameron–Martin–Girsanov formulae, we obtain
a generalized integral fluctuation theorem (GIFT) for discrete jump processes
by constructing a time-invariable inner product. The existing discrete IFTs
can be derived as its specific cases. A connection between our approach and
the conventional time-reversal method is also established. Unlike the latter
approach that has been extensively employed in the existing literature, our
approach can naturally bring out the definition of a time reversal of a Markovian
stochastic system. Additionally, we find that the robust GIFT usually does not
result in a detailed fluctuation theorem.

PACS numbers: 05.70.Ln, 02.50.Ey, 87.10.Mn

1. Introduction

One of the most important developments in nonequilibrium statistic physics over the past two
decades is the discovery of various fluctuation theorems. They are regarded as nonperturbative
extensions of the fluctuation–dissipation theorems in the near equilibrium region to far from
equilibrium region. According to their mathematical expressions, these theorems are roughly
divided into two types: the integral fluctuation theorems (IFTs) [1–11] and the detailed
fluctuation theorems (DFTs) [4, 12–15]. The former follows a unified expression

〈exp[−A]〉 = 1, (1)

where A is a functional of a stochastic trajectory of a concerned stochastic system and the
angular brackets denote an average over the ensemble of the trajectories that start in a given
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initial distribution. For instance, A may be the dissipated work along a trajectory, and (1) is
the celebrated Jarzynski equality (JE) [1, 2].

Due to the insightful work of Hummer and Szabo [16], we now know that these IFTs have
an intimate connection with the famous Feynman–Kac formula (FK) [17, 18] in the stochastic
theory of diffusion processes [19]. Recently, several works including ours have reinvestigated
this issue from mathematical generalization and rigors [9, 20–23]. One of the findings is that
the application of the FK formula in proving the IFTs is based on a construction of a time-
reversed process of a diffusion process [22, 23]. Since the definition of a time reversal has some
certain arbitrariness [22], we have obtained a generalized IFT (GIFT) by constructing a time-
invariable integral and employing the FK and Cameron–Martin–Girsanov (CMG) formulae
[24, 25] simultaneously, and the several IFTs [2, 5, 7, 9] were specific cases of the GIFT
[23]. We should emphasize that all of the works focused on the continuous diffusion processes
described by the Fokker–Planck (FK) equation.

In addition to the continuous case, there is still another kind of stochastic jump process
described by Markovian discrete master equations. In many practical physical systems, the
description of a discrete jump process is more satisfactory than the description of a continuous
diffusion process, e.g., the systems only involving a few individual objects [26]. One may
naturally think that there exists a GIFT in the discrete version, and the discrete IFTs in the
literature [7, 11, 27, 28] are specific cases of it as well. At first sight, this effort seems trivial
since a continuous diffusion process can always be discretized to a discrete jump process.
However, in addition, one hardly ensures that the ‘discrete’ GIFT achieved in this way is really
exact, we know that a jump process is not always equivalent to the discretization of a certain
continuous process [26]. On the other hand, to our knowledge fewer works have formally
studied the IFTs for general jump processes employing the FK and CMG formulae. Several
authors have mentioned this possibility earlier [29, 30]. Therefore, in our opinion a rigorous
derivation of an exact GIFT for discrete jump processes is essential and meaningful. In this
communication, we present this effort. Because we focus on the general Markovian jump
processes, little physics is mentioned here. The detailed discussions about the specific IFTs
in the literature should suffice.

2. Generalized integral fluctuation theorem

We start with a Markovian jumping process described by a discrete master equation

dpn(t)

dt
= [H(t)p(t)]n, (2)

where the N-dimensional column vector p(t) = (p1, . . . , pN)T is the probability of the system
at individual states at time t (state index n may be a vector), the matrix element of the time-
dependent or time-independent rate Hmn > 0(m �= n) and Hnn = −∑

m�=n Hmn. Given a
normalized positive column vector f(t) = (f1, . . . , fN)T and a N × N matrix A that satisfies
condition fnHmn + Amn > 0 (m �= n) and Ann = −∑

m�=n Amn, we state that an inner product

fT(t ′)v(t ′) is time invariable if the column vector v(t ′) = (v1, . . . , vN)T satisfies

dvn(t
′)

dt ′
= −(HTv)n − f −1

n [∂t ′f − Hf]n vn + f −1
n [(A1)n vn − (ATv)n], (3)

where the final condition of vn(t) is qn (t ′ < t), and the column vector is 1 = (1, . . . , 1)T.
This is easily proved by noticing a time differential dt ′ [fT(t ′)v(t ′)] = dt ′(fT)v + fTdt ′(v) and
the transpose property of a matrix. Employing the FK and CMG formulae for jump processes
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(for a simple derivation about the latter see appendix A), (3) has a stochastic representation
given by

vn(t
′) = En,t ′[e−J [x,f,A]qx(t)

]
(4)

and

J [x, f, A] =
∫ t

t ′
f −1

x(τ ) [−∂τ f + Hf + A1]x(τ ) dτ −
∫ t

t ′
f −1

x(τ )Ax(τ )x(τ ) dτ

−
k∑

i=1

ln

[
1 +

Ax(t+
i )x(t−i )(ti)

fx(t−i )(ti)Hx(t+
i )x(t−i )(ti)

]
, (5)

the expectation En,t ′ is over all trajectories x generated from (2) with fixed initial state n at
time t ′, x(t ′) is the discrete state at time t ′, x(t−i ) and x(t+

i ) represent the states just before and
after a jump occurring at time ti , respectively, and we assumed that the jumps occur k times
for a trajectory. The readers are reminded that the first and last two terms of the functional
are the consequences of the FK and GCM formulae, respectively. We see that the last term
is significantly different from that in the continuous processes ((11) in [23]). Combining the
stochastic representation and the time-invariable quantity and choosing t ′ = 0, we obtain the
exact discrete GIFT for a jump process,

N∑
m=1

fm(0)Em,0
[
e−J [x,f,A]qx(t)

] = fT(t)q. (6)

Particularly, the right-hand side of the equation becomes 1 if q = 1.

3. Relationship between GIFT and existing IFTs

The abstract (6) includes several discrete IFTs in the literature. First, we investigate the case
in which the discrete system has a transient steady-state solution H(t)pss(t) = 0. Choosing
matrix A= 0 and vector f(t) = pss(t), (5) is immediately simplified into

J = −
∫ t

0
∂τp

ss
x(τ )(τ ) dτ . (7)

If one further regards pss as satisfying a time-dependent detailed balance condition
Hmn(t)p

ss
n (t) = Hnm(t)pss

m (t), the above functional may be analogous to the dissipated
work and (6) is the discrete version of the JE [1, 2]. On the other hand, if pss is a transient
nonequilibrium steady-state without detailed balance, (7) could be rewritten as

J = ln
pss

x(0)(0)

pss
x(t)(t)

+
k∑

i=1

ln
pss

x(t+
i )

(ti)

pss
x(t−i )

(ti)
, (8)

where we used the following relationship:

dt ln pss
x(t)(t) = ∂t ln pss

x(t)(t) +
k∑

i=1

δ(t − ti) ln
[
pss

x(t+
i )(ti)

/
pss

x(t−i )
(ti)

]
. (9)

Then we may interpret the first term in (8) as the entropy change of the system and the second
term as the ‘excess’ heat of the driven jump process. Under this circumstance, (6) is the
discrete version of the Hatano–Sasa equality [5].

The last case is about nonvanishing A(t). We choose matrix element

Amn(t
′) = Hnm(t ′)fm(t ′) − Hmn(t

′)fn(t
′) (m �= n), (10)
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or flux Jmn(t
′) between states m and n for a distribution f(t). Obviously, the condition of

fnHmn + Amn > 0 is satisfied. Substituting this matrix into (5), we obtain

J = −
∫ t

0
∂τ ln fx(τ )(τ ) dτ +

k∑
i=1

ln
Hx(t−i )x(t+

i )(ti)fx(t+
i )(ti)

Hx(t+
i )x(t−i )(ti)fx(t−i )(ti)

. (11)

The physical meaning of the above equation becomes clear when we again employ (9) and
have

J = ln
fx(0)(0)

fx(t)(t)
+

k∑
i=1

ln
Hx(t+

i )x(t−i )(ti)

Hx(t−i )x(t+
i )(ti)

. (12)

Hence, if f(t) is the distribution of the system itself satisfying the evolution (2), the first term
in the equation is just the entropy change of the system and the second term is interpreted as
the entropy change of the environment [7, 11]. In other words, the GIFT with (12) is about
the total entropy change of a stochastic jump process.

4. GIFT and time reversal for jump processes

Similar to the case of continuous diffusion processes [23], in the following we establish
a connection between the time-invariable inner product and a jump process that is a time
reversal of the original process. Multiplying fn(t

′) and rearranging on both sides of (3), we
have

d

dt ′
[fn(t

′)vn(t
′)] = −

N∑
m=1

f −1
m [Hmnfn + Amn] fmvm + fnvn

N∑
m=1

f −1
n [Hnmfm + Anm] . (13)

Then we define a new function qn̄(s) = fn(t
′)vn(t

′), where s = t − t ′ and n̄ represents an
index whose components are the same or the minus of the components of index n depending
on whether they are even or odd under time reversal (t → −t). We also define a new rate
matrix H(s) whose elements are

Hn̄m̄(s) = f −1
m (t ′)[Hmn(t

′)fn(t
′) + Amn(t

′)] (m �= n), (14)

and Hm̄m̄(s) = −∑
n̄ �=m̄ Hn̄m̄(s). Hence, (13) can be rewritten as

dqn̄(s)

ds
= [H(s)q(s)]n̄. (15)

Because of variable s = t − t ′, we interpret H(t) as a time reversal of the original H(t).
Equation (15) directly presents the reason of the time-invariable inner product fT(t ′)v(t ′) that
equals 1Tq(s); the latter is a constant due to probability conservation.

The generalized time reversal (14) includes several types of time reversals in the literature
[5, 11, 31]. For convenience, we only consider even components only in the state index n. First,
if the matrix A = 0 and f(t ′) = pss(t ′) satisfy the time-dependent detailed balance condition,
the time-reversed rate matrix H(t ′) = H(s) simply. The process governed by this rate matrix
was termed a backward process [11] (or a reversed protocol in [31]). In contrast, if pss(t ′) is the
transient nonequilibrium steady state, a process determined by Hnm(t ′) = fn(s)Hmn(s)/fm(s)

was termed an adjoint process [11] (or the current reversal in [22]). Intriguingly, if we
choose Amn(s) to be flux Jmn (10) between states m and n for a distribution f(s), we reobtain
H(t ′) = H(s) that is the same as in the first case. Considering that these choices of f and A
here are corresponding to those in section 3, respectively, we conclude that the JE and the IFT
of the total entropy have the same physical origin. It is expected in physics that the realization
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of a reversed protocol is usually possible and does not depend on whether the system satisfies
a time-dependent detailed balance condition. We should point out that one may construct
infinite time reversals since f and A are almost completely arbitrary, e.g., Amn(s) = αJmn(s)

and 0 � α � 1. Before ending this section, we give two comments about relationship
qn̄(s) = fn(t

′)vn(t
′). First, for a time-independent H, if fn is the equilibrium solution of the

rate matrix, (3) with zero A is just the backward master equation [26]. Second, employing
the relationship repeatedly, we may obtain the detailed DFTs for the specific vectors f(t ′) and
matrixes A(t ′) in section 3. In general, the GIFT is not equivalent to the detailed DFT (for
more details see appendix B).

5. Conclusion

In this work, we derive a GIFT for general jump processes. The existing IFTs for discrete
master equations are its special cases. We see that the form of the GIFT for the jump
cases is significantly distinct from that for the continuous diffusions that we obtained earlier
[23]. Additionally, we also find that this robust GIFT usually does not result into a detailed
fluctuation theorem. Compared to other approaches, the major advantage of our two works is
that the time reversal comes out automatically during the constructions of the time-invariable
integral or the inner product, which is direct and obvious. Of course, the limit of these works
is that we did not show any applications of the two GIFTs in physical systems. We hope that
this weakness will be remedied in the near future.
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Appendix A. The Cameron–Martin–Girsanov formula for jump processes

Compared to the CMG formula for continuous diffusion processes, not much of the literature
has discussed the CMG formula for discrete jump processes. For the convenience of the
readers, we give a simple derivation of the formula here. Given a master equation with rate
matrix H. The probability of observing a trajectory x which starts state n1 at time t0 = 0,
jumps at time t1 to state n2, . . ., finally jumps at time tk to nk+1 and stays till time tk+1 = t is

prob[x] =
k∏

i=1

exp

[∫ ti

ti−1

Hx(t−i )x(t−i )(τ ) dτ

]
Hx(t−i )x(t+

i ) × exp

[∫ t

tk

Hnk+1nk+1(τ ) dτ

]
, (A.1)

where x(t−i ) = ni and x(t+
i ) = ni+1 (i = 1, . . . , k). We assume that there is another master

equation with a different rate matrix H′ = H + A, where the matrix elements of A may be
negative. Then the ration of the probabilities of observing the same trajectory in these two
equations is simply

prob′[x] = prob[x] e−Q[x], (A.2)

where

Q[x] = −
∫ t

0
Ax(τ )x(τ )(τ ) dτ −

k∑
i=1

ln

(
1 +

Ax(t−i )x(t+
i )

Hx(t−i )x(t+
i )

)
. (A.3)

5



J. Phys. A: Math. Theor. 42 (2009) 332003 Fast Track Communication

Obviously, (A.2) results in an IFT

〈e−Q[x]〉 = 1, (A.4)

where the average is over an ensemble of trajectories generated from the stochastic system
with rate matrix H and with any initial distribution. Choosing a specific

Amn(t) = pss
n (t)−1

[
Hnm(t)pss

m(t) − Hmn(t)p
ss
n (t)

]
(m �= n) (A.5)

and Ann = −∑
m�=n Amn(t) = 0, we obtain the IFT of the house-keeping heat [8, 11] in the

discrete version, where

Qhk[x] =
k∑

i=1

Hx(t−i )x(t+
i )(ti)p

ss
x(t+

i )
(ti)

Hx(t+
i )x(t−i )(ti)p

ss
x(t−i )

(ti)
. (A.6)

Intriguingly, replacing pss
m above by the real probability distribution pm(t) of the system H,

one obtains a new IFT with

Q[x] =
∫ t

0
∂τ ln px(τ )(τ ) dτ +

k∑
i=1

Hx(t−i )x(t+
i )(ti)px(t+

i )(ti)

Hx(t+
i )x(t−i )(ti)px(t−i )(ti)

. (A.7)

We note that this functional is almost the same as that of the IFT of the total entropy (11)
except that the symbol of the first term is plus here. In addition, the average of (A.7) is the
same as the average of the total entropy (11) since the first terms of them vanish. We are not
very clear whether (A.7) has new physical interpretation.

Appendix B. The detailed fluctuation theorem

Given the transition probability of (15) to be qn̄(s
′|m, s) (0< s < s ′ < t), the previous

relationship implies

qn̄(s
′|m, s)fm̄(t − s) = fn(t − s ′)En,t−s ′[

e−J (t−s ′,t−s)δx(t−s),m̄

]
, (B.8)

if one notes the initial condition qn̄(s|m, s) = δn̄,m, where we use J (t − s ′, t − s) to denote
the functional (5) with the lower and upper limits t − s ′ and t − s, respectively, and δ is the
Kronecker’s. Now we consider a mean of a (k + 1)-point function over the time-reversed
system (15),

〈F [x̄(sk), . . . , x̄(s0)]〉TR

=
∑

n0,...,nk

qnk
(sk|nk−1, sk−1) · · · qn1(s1|n0, s0)qn0(s0)F (n̄k, . . . , n̄0), (B.9)

where 0=s0 < s1 < · · · < sk = t and q(s0) is the initial distribution. If we choose a specific
qn0

(s0) = fn̄0(t − s0) and employ (B.8) repeatedly, the right-hand side of the above equation
becomes

〈e−J [x,f,A]F [x(t0), . . . , x(tk)]〉
=

∑
n̄k

fn̄k
(t − sk)E

n̄k,t−sk
{
e−J (0,t)F [x(t − sk), . . . , x(t − s0)]

}
. (B.10)

Here we define ti = t − sk−i and 0 = t0 < t1 < · · · < tk = t . On the basis of the above
discussion, if k → ∞, function F becomes a functional F over the space of all trajectories x,
and we get an identity

〈F̄〉TR = 〈e−J [x,f,A]F〉, (B.11)

where F̄(x) = F(x̄) and x̄ is simply the time-reversed trajectory of x. This is a generalization
of Crooks’ relation [4]. Obviously, choosing the F constant, one obtains the GIFT (6). An
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important following question is whether the GIFT results in a DFT. For the specific matrixes
A(t) and vectors f(t) in section 3, we indeed obtain several DFTs

PTR(−J ) = P(J )e−J , (B.12)

by choosing F(x) = δ(J [x, f, A]−J ), where P(J ) is the probability distribution for quantity
J achieved from the jump process (2) and PTR(J ) is the corresponding distribution from the
time-revered system (15). According to the expression of (5), for any pair of A and f, (B.13)
usually does not hold. Of course, one may obtain an alternative identity

P̄TR(J ) = P(J )e−J , (B.13)

by formally introducing a probability distribution P̄TR(J ) for quantity J̄ [x, f, A] = J [x̄, f, A]
from the time-reversed system.
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